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Previously I had written up some notes where I calculated the equivalent resistance of a rectangular
cross section conductor by dividing the surface up into segments, using a piecewise constant charge
distribution over each segment, and solving for the charge distribution that gives an equipotential
on the surface. I then calculated an equivalent diameter for the r.f. resistance of this conductor. It
is also easy to calculate the equivalent diameter of a circular cross section conductor that gives the
same capacitance per unit length. Since the capacitance is calculated as the ratio of the total charge
to the potential difference. This equivalent diameter is the one used in replacing the rectangular cross
section element with a circular cross section one for perfectly conducting approximation in antenna
codes, while the resistive diameter can be used to evaluate the resistive loss terms.

Y.T. Lo, “A note on the cylindrical antenna of noncircular cross section,” J. App. Phys. 24, 1338
(1953), solved for the self impedance equivalent diameter of regular polygon cross section conductors.
Here I extend his analysis to rectangular cross section conductors. I calculate both the equivalent
self impedance diameter and the equivalent r.f. resistance diameter.

Lo used the conformal mapping from the u to z planes given by

dz =
n∏
i=1

(u− ai)αiu−2du, (1)

and showed how it can map the exterior of a circle to the exterior of an n-sided regular polygon if
the ai are the n nth roots of 1, and αi are 2/n. For rectangles, we keep αi = 2/n and keep the the
ai on the unit circle, but not evenly spaced. Specifically, we take angles θ, π, π + θ, 2π, to make
a rectangle. The value of θ determines the two sides of the rectangle. θ = π/2 gives a square and
reduces to Lo’s solution for n=4. The function Eq. 1 can now be written as

dz = [u2e−iθ + u−2eiθ − 2 cos(θ)]
1
2u−1du (2)

where we drop an unimportant constant phase factor of exp(−iθ/2). The length of the two sides
of the rectangle corresponding to the original unit circle are given by integrating u around the unit
circle, That is with u = ρeiφ, with ρ = 1,

dz = [2 cos(2φ− θ)− 2 cos(θ)]
1
2dφ (3)

Choosing θ less than or equal to π/2, the lengths of the two sides of the rectangle corresponding
to the unit circle are

s1 =
∫ θ

0

∣∣∣∣∣dzdφ
∣∣∣∣∣ dφ

1



=
√

2
∫ θ

0
| cos(2φ− θ)− cos(θ)| 12dφ

s2 =
∫ π

θ

∣∣∣∣∣dzdφ
∣∣∣∣∣ dφ

=
√

2
∫ π

θ
| cos(2φ− θ)− cos(θ)| 12dφ (4)

with s2 the longer side. The form of these integrals is very similar to the form we get when we solve
for the exact dynamics of a simple pendulum. The integrals can be written in terms of complete
elliptic integrals with the standard substitution

sin(φ− θ/2) = sin(θ/2) sin(γ) (5)

to be

s1 = 4[E(k)− k′2 K(k)]

s2 = 4[E(k′)− k2 K(k′)] (6)

where k = sin(θ/2), and k′ =
√

1− k2 is the complementary modulus. K(k) and E(k) are the
complete elliptic integrals of the first and second kinds defined as usual as

K(k) =
∫ π/2

0

1√
1− k2 sin2(γ)

dγ

E(k) =
∫ π/2

0

√
1− k2 sin2(γ)dγ (7)

The effective self impedance diameter for this size rectangle is two. The effective self impedance
diameter of a rectangular cross section conductor of width w and thickness t is given by

dself =
2w

s2
= w

1

2[E(k′)− k2 K(k′)]
(8)

where θ is chosen so that s2/s1 equals w/t, that is

w

t
=
E(k′)− k2 K(k′)

E(k)− k′2 K(k)
(9)

The charge density can be obtained similarly. The charge density is proportional to the per-
pendicular electric field. The equipotentials for the u system are circles, so we can calculate other
equipotentials by choosing ρ > 1. We can take the normal derivative of the potential to get the per-
pendicular electric field. You can think of this as evaluating the distance h that a nearby equipotential
is from the rectangle. The derivative of the potential is then just the difference in the potentials
divided by this distance. Taking the derivative with respect to ρ and calculating this distance gives

E(φ) =

[
2

3
2

∫ φ

0

sin(2φ′ − θ)
| cos(2φ′ − θ)− cos(θ)| 12

dφ′
]−1

= 2−
3
2 | cos(2φ− θ)− cos(θ)|− 1

2 (10)
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Normalizing this to 1, we get the normalized charge density to be

σ(φ) =
2−

1
2

2π
| cos(θ)− cos(2φ− θ)|− 1

2 (11)

The integral of the charge density squared around the square is then

∫ 2π

0
σ(φ)2

∣∣∣∣∣dzdφ
∣∣∣∣∣ dφ =

1√
32π2

∫ π

0
| cos(2φ− θ)− cos(θ)|− 1

2dφ. (12)

These integrals can also be done in terms of elliptic integrals giving

∫ 2π

0
σ(φ)2

∣∣∣∣∣dzdφ
∣∣∣∣∣ dφ =

1

4π2
[K(k) +K(k′)] (13)

and the effective resistance diameter is

dresistance = w
π

2[K(k) +K(k′)][E(k′)− k2 K(k′)]
(14)

Previously, I fit my brute force numerical calculations to the expressions

dself = w[0.5 + 0.9t/w − 0.22(t/w)2] (15)

and

dresistance = w
1

1 + 1.13 log10(w/t)
(16)

Table 1: The calculated values of the self impedance effective diamter and the resistance effective
diameter as a function of the cross section width divided by thickness compared to the fits. The
value of k is the calculated value to get the correct w/t ratio.

w/t k dself Eq. 15 dresistance Eq. 16
1 0.70711 1.18034 w 1.18 w 1.00000 w 1.00 w
2 0.58862 0.87476 w 0.90 w 0.73203 w 0.75 w
5 0.43001 0.67185 w 0.67 w 0.53502 w 0.56 w
10 0.32480 0.59529 w 0.59 w 0.44872 w 0.47 w
20 0.23912 0.55265 w 0.54 w 0.39123 w 0.40 w
50 0.15567 0.52383 w 0.52 w 0.33997 w 0.34 w
100 0.11131 0.51299 w 0.51 w 0.31200 w 0.31 w
200 0.07920 0.50704 w 0.50 w 0.28962 w 0.28 w
500 0.05030 0.50310 w 0.50 w 0.26564 w 0.25 w
1000 0.03562 0.50166 w 0.50 w 0.25042 w 0.23 w

It seems likely to me that this calculation would have been done long ago and is probably buried
somewhere in the literature, however, I have not found it anywhere. All the integrals can be evaluated
in terms of elliptic integrals, and tables of these have been available for a very long time.
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