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Abstract

The HA5WH phase shift network is analyzed. The ideal network
with cyclic symmetry is described and simple design equations are
given. Calculations that allow for component tolerances, show that
well matched components must be used to obtain high quality results.
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1 Introduction

The Phasing method of single-sideband generation or detection requires two
signals with a 90◦ relative phase shift over the audio frequency range. The
phasing method has never been very popular, particularly once relatively in-
expensive filters became available. In the future, presumably, digital signal-
processing techniques will perform the necessary audio phase shifting or di-
rectly generate the radio frequency single-sideband signal. Why then should
you be interested in audio phase-shift networks? Perhaps because they are
relatively low cost, easy to build, and are fun to play with. In addition,
the techniques that I describe here are useful for efficient analysis of other
cascaded networks.

For many years, the ARRL Handbook[1] has included a circuit for an
audio phase shift network designed by HA5WH. I have not located the orig-
inal reference for this network. The Handbook claims that the circuit gives
approximately 60dB of opposite sideband suppression using 10 percent tol-
erance components. This flies in the face of the usual result that you need
1 percent components to get around 40dB suppression. In this article, I will
analyze and give design equations for this type of network. Unfortunately,
this analysis shows that using 10 percent tolerance components can lead to
poor sideband suppression. With ideal components the network can give
excellent performance, and by using either high tolerance components, or
well matched lower tolerance components, the network still can give good
performance.

In section 2, I give the general formula for the sideband suppression in
terms of the phase and amplitude errors in the phasing network. In section
3, I derive an efficient method of analyzing a general network of the HA5WH
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type. Section 4 gives the analysis of an ideal realization of the network. Sec-
tion 5 describes the optimization of the network in terms of easily calculated
elliptic functions, and section 6 gives the effects of component tolerances.
The result is a set of simple design equations for the ideal network and an
estimate of the sensitivity to component tolerances. The Appendix contains
a listing of a set of Fortran programs that implement the methods described.

2 The Effects of Phasing Errors on Sideband

Suppression

The phasing method generates a single sideband signal, given mathematically
as cos((ωc ± ωa)t), where the + (-) sign gives the upper (lower) sideband,
and ωc = 2πfc where fc is the carrier frequency. Similarly, ωa = 2πfa where
fa is the audio modulating frequency. The cosine can be written as

cos((ωc ± ωa)t) = cos(ωct) cos(ωat)∓ sin(ωct) sin(ωat), (1)

the basic equation of the phasing method. The multiplications on the right-
hand side are accomplished using balanced modulators, and the two audio
frequencies (as well as the two radio frequencies) must be 90◦ out of phase
and of equal amplitude. I will assume that the radio frequencies are exactly
90◦ out of phase, and of equal amplitude. Using the usual complex notation
with VAe

jωat to be one audio signal, and VBe
jωat to be the other, the result

of using a nonideal phasing network will be

Re[cos(ωct)VAe
jωat+sin(ωct)VBe

jωat] =
1

2
Re[ej(ωc+ωa)t(VA−jVB)+e−j(ωc−ωa)t(VA+jVB)],

(2)
and the sideband suppression (or enhancement) is given by

20 log10

∣∣∣∣∣VA + jVB
VA − jVB

∣∣∣∣∣ . (3)

Notice if |VA| equals |VB|, that is if the two signals have equal amplitude then
for a phase error of δ, the suppression in dB is simply,

−20 log10 |tan(
δ

2
)|. (4)
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3 Analyzing the HA5WH Network

Fig. 1 gives the circuit diagram of the HA5WH network as shown in the
ARRL Handbook. Given this circuit, it is easy to analyze the network nu-
merically using a mesh or nodal analysis. The disadvantage of this brute
force approach is that it gives no insight into why the network works, or how
changes in the network affect its performance. I will therefore describe a
method that is both more efficient numerically, and by using the symmetry
of the ideal network, leads to simple design equations.

Clearly, the network consists of 6 sections each with 4 input connections
and 4 output connections. One of these sections is shown in fig. 2. I have
labeled the input voltages and currents V1, V2, V3, V4, I1, I2, I3, I4. The
corresponding output voltages and currents are labeled V ′1 , V ′2 , V ′3 , V ′4 , I ′1,
I ′2, I ′3, I ′4. A straightforward nodal analysis of this network gives the 8 linear
equations represented by the matrix equation(

I
I ′

)
=

(
M11 M12

M21 M22

)(
V
V ′

)
(5)

where V , V ′, I, I ′ are length 4 vectors, and the Mij are 4 by 4 matrices. Eq.
5 compactly represents the 8 equations that are the requirements of current
conservation at each of the nodes of the network section. The Mij matrices
are

M11 =


1
R1

+ jωC1 0 0 0

0 1
R2

+ jωC2 0 0

0 0 1
R3

+ jωC3 0

0 0 0 1
R4

+ jωC4

 , (6)

M12 =


− 1
R1

0 0 −jωC1

−jωC2 − 1
R2

0 0

0 −jωC3 − 1
R3

0

0 0 −jωC4 − 1
R4

 , (7)

M21 =


1
R1

jωC2 0 0

0 1
R2

jωC3 0

0 0 1
R3

jωC4

jωC1 0 0 1
R4

 , (8)
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Figure 1: The schematic diagram of the HA5WH wideband phase shift net-
work.
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Figure 2: The schematic diagram of 1 section of an HA5WH network.
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M22 =


− 1
R1
− jωC2 0 0 0

0 − 1
R2
− jωC3 0 0

0 0 − 1
R3
− jωC4 0

0 0 0 − 1
R4
− jωC1

 . (9)

In exact analogy with cascading two-port networks using ABCD matrices,
to cascade these network sections, I define a new matrix equation,(

V ′

I ′

)
=

(
A11 A12

A21 A22

)(
V
I

)
(10)

Solving for the Aij matrices gives,

A11 = −M−1
12 M11,

A12 = M−1
12

A21 = M21 −M22M
−1
12 M11

A22 = M22M
−1
12 (11)

where M−1
12 is the inverse of the matrix M12.

Labeling the 8 by 8 matrices for each of the n sections of the network by
A(1), A(2), ... A(n), the matrix relating the input to the output of the full
network is Ã, made up of the four 4 by 4 matrices Ãij ,(

Vout
Iout

)
=

(
Ã11 Ã12

Ã21 Ã22

)(
Vin
Iin

)
(12)

where Ã is the matrix product A(1)A(2)A(3)...A(n).
The handbook circuit drives 4 resistors on the 4 output connections. La-

beling these as R
(out)
1 , R

(out)
2 , R

(out)
3 , R

(out)
4 , and defining a 4 by 4 load matrix

L,

L =



1

R
(out)
1

0 0 0

0 1

R
(out)
2

0 0

0 0 1

R
(out)
3

0

0 0 0 1

R
(out)
4

 (13)

I can write the relationship between the output voltage and current as,

(Iout) = L(Vout). (14)
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Solving for Iout, and back substituting gives the final network matrix equation
relating the 4 output voltages to the 4 input voltages,

(Vout) = (1− Ã12Ã
−1
22 L)−1(Ã11 − Ã12Ã

−1
22 Ã21)(Vin), (15)

where 1 in Eq. 15 stands for the unit matrix
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (16)

If the output resistors are large compared to the other circuit impedances,
L can be taken to be zero. In that case the equations simplify to,

(Vout) = (Ã11 − Ã12Ã
−1
22 Ã21)(Vin). (17)

The handbook network has (Vin) proportional to

(Vin) ∝


1
1
−1
−1

 . (18)

After calculating the Ã and L matrices from the circuit values, the output
signals need to be combined as,

Vout,1 − Vout,3 = VA

Vout,2 − Vout,4 = VB (19)

and the sideband suppression is given by Eq. 3. The relative amplitude and
phase of the signals can also be calculated. Most phase shift networks are
based on all pass networks so that the amplitude of all signals are equally
attenuated. The HA5WH network is not an all pass network. Ideally, we
want both good sideband suppression and we want VA and VB to be constant
in amplitude and phase across the passband of the audio circuit.

I have written a Fortran program to implement the analysis of this section.
It is given in the Appendix. If the matrices that are inverted become singular,
the above analysis breaks down at the singular points. For example, M12

becomes singular when

ω4 =
1

R1R2R3R4C1C2C3C4
. (20)
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Near these points, roundoff error in the calculations will be large. For the
analysis done here, this is not a big problem. However, analysis on networks
with many sections or near singular points will require more numerical care
than I have taken in the program in the appendix, or the use of a the standard
formulation where the full set of network equations are solved at once.

4 Analysis of the Ideal Cyclic Network

The design of the HA5WH network, as shown in the handbook, has four
identical resistors and four identical capacitors in each of the six network
sections. This means the network is invariant under a cyclic interchange of
the ordering of its ports. That is if we were to relabel the ports by letting 1
become 2, 2 become 3, 3 become 4, and 4 become 1, we would obtain exactly
the same equations describing the network. Such invariances are treated
generally using the mathematics of group theory[2], which greatly simplifies
the study of system with symmetries. The ideal HA5WH network has what
is known as cyclic 4 or C4 symmetry. The network equations can be analyzed
using group theory. Analysis of the character of the matrix that represents
the cyclic operator shows that each of the 4 irreducible representation of C4

appears once. These therefore correspond to the 4 eigenvectors of the Ã
matrices, which can then be written down immediately.

Most hams probably are unfamiliar with group theory, however, the re-
sults can be easily verified without using group theory. The right eigenvectors
ψ(m) and the eigenvalues λm of a matrix M are defined by finding the solutions
to the equations,

Mψ(m) = λmψ
(m). (21)

That is multiplying the eigenvector by the matrix gives the same eigenvec-
tor back as the result, simply multiplied by the eigenvalue. The effect of
multiplying a matrix times one of its eigenvectors is to simply multiply the
eigenvector by the eigenvalue.

The cyclic eigenvectors in our basis, are those that change by a constant
phase between the elements, with the same phase change between the last
and first elements. This gives,

1
1
1
1

 ,


1
−1
1
−1

 ,


1
j
−1
−j

 ,


1
−j
−1
j

 . (22)
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By direct matrix multiplication, it is easily verified that these are the eigen-
vectors of all the M matrices if all the R and C values are the same in a
network section. This is a direct consequence of the cyclic 4 symmetry. Fur-
ther, since the Ã matrices are combinations of products of the M matrices,
these same vectors are the eigenvectors of the Ã matrices. Since Vout is given
as a combination of Ã matrices times Vin, if we express Vin as a linear combi-
nation of the four eigenvectors, Vout will be given by taking this same linear
combination and multiplying each term by an appropriate eigenvalue. The
network must then be designed to produce a 90◦ relative phase shift.

The input to the HA5WH network contains only the last two eigenvectors
written above. That is

Vin =


1
1
−1
−1

 =
1− j

2


1
j
−1
−j

+
1 + j

2


1
j
−1
−j

 ≡ 1− j
2

ψa+
1 + j

2
ψb, (23)

where the last line defines the relevant eigenvectors as ψa and ψb. Fur-
ther, the output is also not sensitive to the first 2 eigenvectors if the output
impedances are identical and the operational amplifiers have good common
mode rejection. Having both of the conditions will be helpful if the cyclic
symmetry is broken because of component tolerances.

With the input as in Eq. 23, the output will in general be

Vout =
1− j

2
gaψa +

1 + j

2
gbψb, (24)

and the two outputs to the balanced modulators will be

VA = (1− j)ga + (1 + j)gb

VB = (1− j)jga − (1 + j)jgb (25)

the suppression in dB is using Eq. 3,

20 log10

∣∣∣∣∣gagb
∣∣∣∣∣ . (26)

So to design a good network, we must eliminate one of these final two eigen-
vectors.

The analysis so far shows how the HA5WH network can be motivated.
The C4 eigenvectors have equal amplitudes for the 4 voltages, and have a
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phase shift between adjacent ports of 0◦, +90◦, 180◦, and 270◦, this last is
equivalent to a phase shift of −90◦. We want to choose the network drive,
connections, and component values to select out one of the two 90◦ phase
shifted eigenvectors. As an aside, the same ideas could be used to design a
60◦ relative phase shift by using a network invariant under the group C6, or
a 45◦ shift from C8, etc.

The first step in selecting the component values is to calculate the eigen-
values of the four M matrices. By direct multiplication, I get

λa11 = λb11 =
1

R
+ jωC,

λa12 = − 1

R
− ωC, λb12 = − 1

R
+ ωC,

λa21 =
1

R
− ωC, λb21 =

1

R
+ ωC,

λa22 = λb22 = − 1

R
− jωC, (27)

where the superscript a or b indicates the eigenvalue corresponds to the
eigenvector ψa or ψb respectively.

The effect of one of the A matrices, when a single eigenvector is input,
is given by replacing the M matrices in Eq. 11 by their eigenvalues. After a
little algebra, I get,

Aa =
1

1 + ωRC

(
1 + jωRC −R
−2jωC 1 + jωRC

)
(28)

Ab =
1

1− ωRC

(
1 + jωRC −R
−2jωC 1 + jωRC

)
(29)

The Ab matrix is proportional to Aa. If we feed the section of the network
with a linear combination of ψa and ψb, the section suppresses ψa relative to
ψb by a factor of

1− ωRC
1 + ωRC

. (30)

The HA5WH network has the properties that the magnitude of the ratio
given in Eq. 30 is always less than 1 for positive frequencies, and it is exactly
zero for ω = 1/(RC). The first property says that additional network sections
can only improve the relative 90◦ phase shift of the outputs. The second says
that we can set the frequencies of exact 90◦ phase shift by selecting the RC
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values of single network sections. These two properties greatly simplify the
design and optimization of the network.

The sideband suppression at a single frequency is given for an n section
network, with RC values in section i given by Ri and Ci, as

Suppression = 20
n∑
i=1

log10

∣∣∣∣1− ωRiCi
1 + ωRiCi

∣∣∣∣ . (31)

A simple method of picking the RC values for each section is to use a
computer to plot the above result, and adjust n and RiCi to achieve the
required suppression. This is in fact the obvious technique to use if you are
trying to design with a set of parts already in your junk box. However, the
form of the suppression makes it easy to select optimum values as seen in the
next section.

5 Optimizing the Sideband Suppression

The optimum values of RiCi can be easily calculated using elliptic functions.
Typically, we want the worst case suppression to be the highest possible. This
leads us to the equal ripple or Chebychev approximation. The mathematics
is straightforward and given in detail by Saraga[3]. For an upper and lower
frequency of fu and fl respectively, the RiCi values for an n section network
are,

RiCi =
dn(2i−1

2n
K(k), k)

2πfl
, (32)

where k =
√

1− (fl/fu)2, K(k) is the complete elliptic integral of the first

kind, and dn(u, k) is a Jacobi elliptic function[4, 5].
In the Appendix, I provide a listing of a computer program to calculate

the RiCi values given the upper and lower frequencies and the n value. In
table 1, I give some calculated values for some networks of interest to hams,
and their theoretical sideband suppression. These theoretical results will of
course be best cases assuming perfect components.

In passing, I note that Saraga’s Taylor approximation[3] is given by simply
choosing all the RiCi values to be the same and equal to 1

2π
√
fufl

. Also, if

maximum suppression is needed at a particular frequency (for example if
you wanted to use audio tones in a single-sideband transmitter to produce
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fl fu n Sup(dB) f1 f2 f3 f4 f5 f6 f7 f8

300 3000 4 40.5 332.2 629.8 1429.0 2709.0 - - - -
300 3000 5 52.1 320.5 500.7 948.7 1797.6 2808.1 - - -
300 3000 6 63.7 314.2 435.5 720.3 1249.5 2066.8 2864.5 - -
300 3000 7 75.4 310.4 397.8 595.3 948.7 1511.8 2262.4 2899.4 -
300 3000 8 87.0 308.0 374.0 519.4 771.2 1167.0 1732.7 2406.2 2922.5
200 4000 5 42.9 219.5 398.4 894.4 2008.1 3645.0 - - -
200 4000 6 52.7 213.5 332.1 633.1 1263.6 2408.9 3747.8 - -
200 4000 7 62.5 209.9 294.6 497.5 894.4 1608.2 2715.5 3812.0 -
200 4000 8 72.2 207.5 271.2 417.8 689.9 1159.6 1915.0 2949.6 3854.8
150 6000 6 44.7 163.6 287.7 628.9 1431.1 3128.3 5500.9 - -
150 6000 7 53.1 160.0 247.7 471.0 948.7 1910.7 3633.0 5626.4 -
150 6000 8 61.5 157.6 223.1 381.3 696.7 1291.9 2360.2 4033.2 5710.4

Table 1: The optimal Chebychev values for some ideal HA5WH type phasing
networks fl and fu are the upper and lower frequencies, n is the order of
the network, and fi, where i is 1 through n, are the frequencies of exact 90◦

phase shift. The corresponding RC values are 1/(2 πfi). Sup is the minimum
sideband suppression over the network range in dB.

frequency shift keying), it is simple to select RiCi values appropriate for these
frequencies, and then optimize the other network sections.

6 Effects of Amplitude Variations and Com-

ponent Tolerances

So far, I have only looked at the relative phase shift of the two outputs. To
have a high quality audio signal, the network must have a flat output. Usu-
ally, this is handled by constructing an all pass network. Since the HA5WH
network is not an all pass form, we must examine its attenuation as a function
of frequency. In figs. 3, 4, and 5, I plot the sideband suppression, and the
amplitude and phase variations of one of the output signals, respectively for
the optimal 4, 6, and 8 section filters designed for the frequency range 300 Hz
to 3000 Hz with equal value resistors. The network sections are ordered from
largest RC value to smallest as in the original HA5WH design. As shown,
the amplitude variations are less than ±1dB, the phase variation is smooth,
and the sideband suppression is of the equal ripple form as expected.
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One of the main selling points of the handbook description of this net-
work is the claim that low tolerance components can be used to obtain a high
performance network. From the analysis of section 5, if cyclic symmetry is
maintained, the network will perform perfectly at the n selected frequencies
corresponding to f = 1/(2πRC) for each network section. Since matching
components is generally easier than measuring their values accurately, I ex-
amine the effect of a change of these node frequencies caused by perfectly
matched, but low tolerance components. Since both the resistors and capac-
itors can vary, using 10 percent components can vary the nodal frequency
values by approximately 20 percent if both components change value in the
same direction. A worst case condition would be for all the sections to have
too high or too low of a frequency by 20 percent. This simply shifts the
network center frequency by 20 percent. For the optimal 6 section filter from
300 Hz to 3000 Hz, this changes the sideband suppression from over 60 dB
to about 42 dB. If a 10 percent variation of network node frequencies is as-
sumed, that is 5 percent components, and again all the frequency changes are
assumed to be in the same direction, the suppression is nearly 50 dB. This
shows that relatively low tolerance but well matched components can give
excellent results. Eq. 31 can be easily used to predict the effect of changing
the RC values of each filter section due to component tolerances when the
components are perfectly matched in each section.

The case where unmatched R and C values in each section are used is of
course the one with the most practical interest. Here, we can get an idea of
what the worst case possibilities are by looking at the cross terms between
ψa and ψb when the M matrices are no longer cyclic. Typical terms give
contributions like, (

1

R1
+

1

R3

)
−
(

1

R2
+

1

R4

)
, (33)

or
ω(C1 + C3)− ω(C2 + C4) (34)

where here the subscripts 1,2,3,4 indicate the position in the network section
as in fig. 2. This indicates that a single section with a tolerance t (t = 0.1
would be 10 percent tolerance) can reduce the overall suppression to roughly
20 log10(t) dB. That is 10 percent components could give suppressions as
low as 20 dB, and 1 percent components as low as 40 dB if the components
in a network section are not matched. Notice that to be sure to obtain 60
dB opposite sideband attenuation, components with short and long term
tolerances of 0.1 percent would need to be used.
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As a concrete example of this sensitivity to unmatched components, I
calculated the the suppression of the original HA5WH 6 section filter for
the case where only the resistors in the last section have been changed by
10 percent. R1 and R3 have been raised by 10 percent, and R2 and R4

have been lowered by 10 percent. For ideal components, the suppression is
greater than 57 dB. Changing just the resistors in the last section reduces the
suppression to 26 dB, in rough agreement with the simple calculation above.
Using these results to try to cook up a near worst case, I tried changing
all the resistors in exactly the same manner in each section. In addition I
changed all the capacitors by making raising the C2 and C4 values by 10
percent and lowering the C1 and C3 values by 10 percent. The result was
to further lower the unwanted sideband suppression to about 17 dB. Clearly,
10 percent components and bad luck will produce an unacceptable sideband
suppression.

One last comment on the handbook circuit is the design of operational
amplifier circuit for the output. One section of this circuit is shown in fig. 6.
All the resistors have the same value in the handbook circuit. This does not
give a balanced output, and would be another source of phasing errors. If I
assume that the operational amplifier input impedances are very large, the
input impedance at point 2 is clearly 2R2. The voltage at the noninverting
input is therefore V2/2. The current drawn from input 1 is therefore V1−V2/2

R1
,

and since V1 = −V2 with perfect phasing, the impedance seen at input 1
is 1.5R1. So 2R2 should be equal to 1.5R1, and in addition, dc balancing
of the operational amplifiers may be required to compensate for input bias
current. For the handbook circuit, the unbalanced output resistance reduces
the sideband suppression even in the ideal component case to about 35 dB.

Note Added after original publication as mentioned in the errata, the
above paragraph is incorrect. The original circuit will work fine. The circuit
with the resistor ratio of 4/3 also works.

7 Conclusion

The HA5WH network takes advantage of cyclic symmetry to give simple de-
sign equations, and excellent sideband suppression with ideal components.
If the cyclic symmetry is maintained, the network is not very sensitive to
component tolerances. This means that the components in each of the net-
work sections should be carefully matched. Breaking the cyclic symmetry by
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Figure 6: The schematic diagram of one operational amplifier section.
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using unmatched components can drastically effect the performance of the
network.

I have given a set of formulas and Fortran programs to design the optimum
ideal networks, and to analyze both the ideal and nonideal cases. Analyses
other than the cases that I have described here can be easily done with these
methods and codes.

8 Erratum and Addendum

After publication of this note I was contacted by Mike Gingell, KN4BS and
learned that he is the inventor of this circuit along with others of this class
known as “sequence asymmetric polyphase networks.” As expected, he was
aware of most the results here with the possible exception of the application
of Saraga’s methods to form a Chebychev network. However, he told me that
Saraga was one of his PhD examiners, so I don’t think Saraga’s methods were
completely unknown to him.

Here are some references that he sent me that give more history.

1. M.J.Gingell: “A Symmetrical Polyphase Network” British Patents 1,174,709
and 1,174,710 filed 7th June 1968, published 17 Dec 1969, US Patents
3,559,042 and 3,618,133 published Jan 26 1971
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2. M.J.Gingell: “Single Sideband Modulation using Sequence Asymmetric
Polyphase Networks” Electrical Communication Magazine, Vol 48 No
1 and 2 combined 1973, p 21-25

3. Pat Hawker, G3VA: “Polyphase System for SSB Generation” in “Tech-
nical Topics” Radio Communication Oct 73, p698-9

4. Pat Hawker, G3VA: “More on Polyphase SSB” in “Technical Topics”
Radio Communication Dec 73, p852-853

5. M.J.Gingell: “The Synthesis and Application of Polyphase Networks
with Sequence Asymmetric Properties” PhD Thesis University of Lon-
don, 1975
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In addition, my comments on the op amp circuit are incorrect and should
be ignored. Mike Gingell suggests doing away with the op amps altogether
to get the best sideband suppression.
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The Fortran listing for the program that calculates the response of the
general network. The input data is the number of network sections. This
is followed by fl, fu, and the number of intermediate frequency values to
calculate. The 4 R values and then the 4 C values for each of the n sections
is then input, and finally the 4 load resistor values. If the first load resistor
value is negative, the load is taken to be infinite resistance.

A sample data file follows the listing. The data is for the original HA5WH
network as given in the handbook.

program phase

implicit double precision (a-h,o-z)

parameter (zero=0.d0,one=1.d0,two=2.d0,three=3.d0,four=4.d0)

parameter (five=5.d0,six=6.d0,seven=7.d0,eight=8.d0,anine=9.d0)

parameter (ten=10.d0,tenth=.1d0,half=.5d0,third=1.d0/3.d0)

parameter (nsecmx=20)

double complex at11(4,4),at12(4,4),at21(4,4),at22(4,4)

double complex vout(4),va,vb,rat

dimension r(4,nsecmx),c(4,nsecmx),rout(4)

read (5,*) n
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if (n.gt.nsecmx) then

write (6,’(1x,’’nsecmx needs to be increased’’)’)

stop

endif

read (5,*) flow,fhigh,nf

do 10 i=1,n

read (5,*) (r(j,i),j=1,4)

read (5,*) (c(j,i),j=1,4)

10 continue

read (5,*) (rout(j),j=1,4)

pi=four*atan(one)

df=(fhigh-flow)/(nf-1)

write (6,’(’’#’’,t7,’’freq’’,t22,’’mag(VA)’’,t35,’’phase-shift’’

+ ,t52,’’sup(dB)’’,t67,’’sup’’)’)

do 20 kf=1,nf

f=flow+(kf-1)*df

om=two*pi*f

do 30 i=1,4

do 30 j=1,4

at11(j,i)=dcmplx(zero,zero)

at12(j,i)=dcmplx(zero,zero)

at21(j,i)=dcmplx(zero,zero)

30 at22(j,i)=dcmplx(zero,zero)

do 40 i=1,4

at11(i,i)=dcmplx(one,zero)

40 at22(i,i)=dcmplx(one,zero)

do 50 i=1,n

50 call calca(om,r(1,i),c(1,i),at11,at12,at21,at22)

call getv(at11,at12,at21,at22,rout,vout)

va=vout(1)-vout(3)

vb=vout(2)-vout(4)

amag=(va*dconjg(va))

amag=sqrt(amag)

ph=atan2(dimag(va),dreal(va))-atan2(dimag(vb),dreal(vb))

if (ph.lt.zero) ph=ph+two*pi

ph=180.d0*ph/pi

rat=(va+dcmplx(zero,one)*vb)/(va-dcmplx(zero,one)*vb)

sup=rat*dconjg(rat)
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s=one/sqrt(sup)

sup=ten*log10(sup)

write (6,’(1p,5e15.5)’) f,amag,ph,sup,s

20 continue

end

subroutine calca(om,r,c,at11,at12,at21,at22)

implicit double precision (a-h,o-z)

parameter (zero=0.d0,one=1.d0,two=2.d0,three=3.d0,four=4.d0)

parameter (five=5.d0,six=6.d0,seven=7.d0,eight=8.d0,anine=9.d0)

parameter (ten=10.d0,tenth=.1d0,half=.5d0,third=1.d0/3.d0)

dimension r(4),c(4)

double complex at11(4,4),at12(4,4),at21(4,4),at22(4,4)

double complex em11(4,4),em12(4,4),em21(4,4),em22(4,4)

double complex a11(4,4),a12(4,4),a21(4,4),a22(4,4)

double complex czero,det,a1(8,8),a2(8,8),a3(8,8)

czero=dcmplx(zero,zero)

do 10 i=1,4

do 10 j=1,4

em11(j,i)=dcmplx(zero,zero)

em12(j,i)=dcmplx(zero,zero)

em21(j,i)=dcmplx(zero,zero)

10 em22(j,i)=dcmplx(zero,zero)

c

c note em11 = -em11 of notes

c

do 20 i=1,4

ip=i+1

im=i-1

if (ip.gt.4) ip=1

if (im.lt.1) im=4

ar=one/r(i)

em11(i,i)=dcmplx(-ar,-om*c(i))

em22(i,i)=dcmplx(-ar,-om*c(ip))

em12(i,i)=dcmplx(-ar,zero)

em12(i,im)=dcmplx(zero,-om*c(i))

em21(i,i)=dcmplx(ar,zero)

20 em21(i,ip)=dcmplx(zero,om*c(ip))

call cmati(em12,4,det)

23



call cmatm(em12,em11,a11)

call cmatm(em22,em12,a22)

call cmatm(em22,a11,a21)

do 30 i=1,4

do 30 j=1,4

a12(j,i)=em12(j,i)

30 a21(j,i)=em21(j,i)+a21(j,i)

do 40 i=1,4

do 40 j=1,4

a1(i,j)=a11(i,j)

a1(i,j+4)=a12(i,j)

a1(i+4,j)=a21(i,j)

a1(i+4,j+4)=a22(i,j)

a2(i,j)=at11(i,j)

a2(i,j+4)=at12(i,j)

a2(i+4,j)=at21(i,j)

40 a2(i+4,j+4)=at22(i,j)

do 50 i=1,8

do 50 j=1,8

a3(i,j)=dcmplx(zero,zero)

do 50 k=1,8

50 a3(i,j)=a3(i,j)+a1(i,k)*a2(k,j)

do 60 i=1,4

do 60 j=1,4

at11(i,j)=a3(i,j)

at12(i,j)=a3(i,j+4)

at21(i,j)=a3(i+4,j)

60 at22(i,j)=a3(i+4,j+4)

return

end

subroutine getv(at11,at12,at21,at22,rout,vout)

implicit double precision (a-h,o-z)

parameter (zero=0.d0,one=1.d0,two=2.d0,three=3.d0,four=4.d0)

parameter (five=5.d0,six=6.d0,seven=7.d0,eight=8.d0,anine=9.d0)

parameter (ten=10.d0,tenth=.1d0,half=.5d0,third=1.d0/3.d0)

double complex at11(4,4),at12(4,4),at21(4,4),at22(4,4),vout(4)

double complex det,b(4,4),ax(4,4),vtemp(4)

dimension rout(4)

24



c

c solve for the output voltage given balanced input drive

c

call cmati(at22,4,det)

call cmatm(at12,at22,ax)

call cmatm(ax,at21,b)

do 10 i=1,4

do 10 j=1,4

10 b(j,i)=-b(j,i)+at11(j,i)

do 20 i=1,4

20 vout(i)=b(i,1)+b(i,2)-b(i,3)-b(i,4)

c

c if there is a load on the network, calculate its effect

c

if (rout(1).ge.zero) then

do 30 i=1,4

vtemp(i)=vout(i)

ri=one/rout(i)

do 30 j=1,4

30 ax(j,i)=-ax(j,i)*ri

do 40 i=1,4

40 ax(i,i)=one+ax(i,i)

call cmati(ax,4,det)

do 50 i=1,4

vout(i)=dcmplx(zero,zero)

do 50 j=1,4

50 vout(i)=vout(i)+ax(i,j)*vtemp(j)

endif

return

end

subroutine cmatm(a,b,c)

double complex a(4,4),b(4,4),c(4,4)

do 10 i=1,4

do 10 j=1,4

10 c(i,j)=a(i,1)*b(1,j)+a(i,2)*b(2,j)+a(i,3)*b(3,j)+a(i,4)*b(4,j)

return

end

subroutine cmati(a,n,det)
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c

c invert a complex nxn matrix using gauss elimination

c with row pivoting. Note matrix must be dimension (n,n) or equivalently

c

implicit double precision (a-h,o-z)

parameter (zero=0.d0,one=1.d0,two=2.d0,three=3.d0,four=4.d0)

parameter (five=5.d0,six=6.d0,seven=7.d0,eight=8.d0,anine=9.d0)

parameter (ten=10.d0,tenth=.1d0,half=.5d0,third=1.d0/3.d0)

parameter (nmax=100)

double complex a,det,adiag,adiagi,t,cone,czero,atemp

dimension a(n,n)

dimension atemp(nmax),ipvt(nmax)

cone=dcmplx(one,zero)

czero=dcmplx(zero,zero)

if (n.gt.nmax) then

write (6,’(1x,’’ nmax too small in cmati’’)’)

stop

endif

do 10 i=1,n

10 ipvt(i)=i

det=cone

c

c loop through columns

do 20 i=1,n

adiag=a(ipvt(i),i)

idiag=i

c

c find best pivot element in column and record pivot

c

do 30 k=i,n

if (abs(a(ipvt(k),i)).gt.abs(adiag)) then

adiag=a(ipvt(k),i)

idiag=k

endif

30 continue

if (idiag.ne.i) then

det=-det

itemp=ipvt(i)
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ipvt(i)=ipvt(idiag)

ipvt(idiag)=itemp

endif

det=adiag*det

c

c row reduce matrix

c

a(ipvt(i),i)=cone

adiagi=cone/adiag

do 40 k=1,n

40 a(ipvt(i),k)=a(ipvt(i),k)*adiagi

do 50 j=1,n

if (j.ne.ipvt(i)) then

t=-a(j,i)

a(j,i)=czero

do 60 k=1,n

60 a(j,k)=a(j,k)+t*a(ipvt(i),k)

endif

50 continue

20 continue

c

c interchange elements to unpivot inverse matrix

c the following is equivalent to:

c anew(i,ipvt(j))=aold(ipvt(i),j)

c

do 70 j=1,n

do 80 i=1,n

80 atemp(i)=a(i,j)

do 90 i=1,n

90 a(i,j)=atemp(ipvt(i))

70 continue

do 100 i=1,n

do 110 j=1,n

110 atemp(j)=a(i,j)

do 120 j=1,n

120 a(i,ipvt(j))=atemp(j)

100 continue

return
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end

Handbook data file:
6 sections

300. 3000. 28 flow fhigh nf
12.0e3 12.0e3 12.0e3 12.0e3 R values 1st section

.044e-6 .044e-6 .044e-6 .044e-6 C values 1st section
12.0e3 12.0e3 12.0e3 12.0e3

.033e-6 .033e-6 .033e-6 .033e-6
12.0e3 12.0e3 12.0e3 12.0e3
.02e-6 .02e-6 .02e-6 .02e-6
12.0e3 12.0e3 12.0e3 12.0e3
.01e-6 .01e-6 .01e-6 .01e-6
12.0e3 12.0e3 12.0e3 12.0e3

5600.e-12 5600.e-12 5600.e-12 5600.e-12
12.0e3 12.0e3 12.0e3 12.0e3

4700.e-12 4700.e-12 4700.e-12 4700.e-12
150.e3 200.e3 150.e3 200.e3 Output load resistance
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The Fortran listing for the program that calculates the Chebychev values
for RiCi and fi, for the ideal filter is:

program nodes

c

c calculate the node frequencies for a Tchebychev approximation

c to the 90 degree phase shift problem

c

implicit double precision (a-h,o-z)

parameter (zero=0.d0,one=1.d0,two=2.d0,three=3.d0,four=4.d0)

parameter (five=5.d0,six=6.d0,seven=7.d0,eight=8.d0,anine=9.d0)

parameter (ten=10.d0,tenth=.1d0,half=.5d0,third=1.d0/3.d0)

write (6,’(1x,’’ number of sections?’’)’)

read (5,*) n

write (6,’(1x,’’ lower frequency?’’)’)

read (5,*) fl

write (6,’(1x,’’ upper frequency?’’)’)

read (5,*) fu

pi=four*atan(one)

b=fu/fl

ak=one/b

akp=sqrt(one-ak**2)

c

c calculate complete elliptic integral

c

call ck(capkp,ak)

facp=one

facm=one

c

c calculate jacobi elliptic function to get nodes

c

write (6,’(1x,’’ section ’’,’’ frequency ’’, ’’ RC ’’)’)

do 10 i=1,n

arg=(2*i-1)*capkp/(two*n)

call ddn(arg,akp,dn)

fi=fl/dn

write (6,’(1x,i10,f10.1,1p,e12.4)’) i,fi,one/(two*pi*fi)
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facp=facp*(fu+fi)

facm=facm*(fu-fi)

10 continue

sup=two*ten*log10(facp/facm)

write (6,’(1x,’’sideband suppression (dB) = ’’,f10.3)’) sup

end

subroutine ck(compk,ak)

c

c calculate the complete elliptic integral of the first kind

c with complementary argument ak, using the arithmetic

c geometric mean method

c

implicit double precision (a-h,o-z)

parameter (zero=0.d0,one=1.d0,two=2.d0,three=3.d0,four=4.d0)

parameter (five=5.d0,six=6.d0,seven=7.d0,eight=8.d0,anine=9.d0)

parameter (ten=10.d0,tenth=.1d0,half=.5d0,third=1.d0/3.d0)

parameter (error=1.d-12,nitmx=1000)

pi=four*atan(one)

a0=one

b0=ak

do 10 i=1,nitmx

a1=half*(a0+b0)

b1=sqrt(a0*b0)

if (abs(a1-b1).lt.error) go to 20

a0=a1

10 b0=b1

write (6,’(1x,’’warning no convergence in ck’’)’)

20 continue

compk=pi/(two*a1)

return

end

subroutine ddn(u,ak,dn)

c

c calculate the jacobi elliptic function dn(u,ak)

c with argument ak, using the arithmetic geometric mean method

c

implicit double precision (a-h,o-z)

parameter (zero=0.d0,one=1.d0,two=2.d0,three=3.d0,four=4.d0)
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parameter (five=5.d0,six=6.d0,seven=7.d0,eight=8.d0,anine=9.d0)

parameter (ten=10.d0,tenth=.1d0,half=.5d0,third=1.d0/3.d0)

parameter (error=1.d-12,nitmx=100)

dimension a(0:nitmx),c(0:nitmx)

if (abs(ak).gt.one) then

write (6,’(1x,’’ak out of range in ddn’’)’)

stop

endif

a(0)=one

b=sqrt(one-ak**2)

c(0)=ak

do 10 i=1,nitmx

j=i

c(i)=half*(a(i-1)-b)

a(i)=half*(a(i-1)+b)

b=sqrt(a(i-1)*b)

if (abs(c(i)).lt.error) go to 20

10 b0=b1

write (6,’(1x,’’warning no convergence in ck’’)’)

20 continue

phi0=two**j*a(j)*u

do 30 i=j-1,0,-1

phi1=phi0

30 phi0=half*(phi1+asin(c(i+1)*sin(phi1)/a(i+1)))

dn=cos(phi0)/cos(phi1-phi0)

return

end
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