
An ultimatic adapter for iambic keyers

Kevin E. Schmidt, W9CF
6510 S. Roosevelt St.

Tempe, AZ 85283
w9cf@arrl.net

1 Introduction

A few years ago, my daughter Rebecca, KE7TEK, and I put together an Elecraft K2 kit. A great
resource for any rig is the users’ email list; I subscribed to the Elecraft email reflector1 in case we
needed help or advice during construction.

Recently several people on the email list commented that the built-in cw keyers in commercial
rigs are iambic keyers – sometimes like the Elecraft rigs they give you the choice of Curtis mode
A or Curtis mode B,2 but generally not the older ultimatic mode. Since the new Elecraft K3, like
other software defined radios, has downloadable firmware, the obvious, and cleanest, solution to
this problem is to include a selectable ultimatic mode in the keyer firmware. This will probably be
included in the future, but what if you want ultimatic mode now or want to use ultimatic mode
with a rig which won’t be upgraded? You have two choices: either you can use an external keyer
that includes the ultimatic mode, for example the K1EL keyers,3 or you can try to put together an
adapter that will make the internal keyer act like an ultimatic keyer. The advantage of the adapter is
that you can use the rig’s front panel controls – the speed control and all of the rig’s keyer memories
are available. Rigs like the Elecraft K3 can transmit RTTY using the paddle input (but not the
external key line) so that this feature becomes available to ultimatic users.

2 Ultimatic mode

John Kaye’s, W6SRY, first ultimatic keyer design was published in QST in 1953.4 He used a single
lever paddle in his original design. His next version 5 used a dual paddle and it is this keyer’s action
that gives the ultimatic mode its name.

1http://www.elecraft.com/
2When you have closed both paddles and release both of them during a dot or dash, Curtis A just completes that

dot or dash, while Curtis B, completes that dot or dash and then sends the opposite element.
3Available at http://www.k1el.com.
4John Kay, W6SRY, The “ultimatic”– the key with a memory , February QST, p. 11 (1953).
5John Kay, W6SRY, The all-electronic “ultimatic” keyer, part I, April QST, p. 11 (1955), part II, May QST, p.

36 (1955). This design used 11 dual vacuum tubes.

1

While the ultimatic keyer used a dual paddle, unlike iambic keyers closing both the left and right
paddles gave the same result as closing only the last one. For example, to send an x with the ultimatic
mode you could hold closed the dash paddle for the first dash, then add the dot paddle for the middle
two dots, releasing just the dot paddle then gives the last dash. With the ultimatic mode all letters
except C can be made with one closure of the dot and/or dash paddles. Iambic keyers can make a
C with a single squeeze, but need more than one closure for X and P. An ultimatic keyer can make
a question mark, comma, and double dash, BT, with one closure, while an iambic keyer can make
periods, semicolons and AR, SK and AA with one closure.

After learning about the ultimatic mode, I thought it would be fun to try to come up with a
circuit that would allow a standard iambic keyer to function like the ultimatic. Since you can build a
whole keyer from a microcontroller, you can obviously use a microcontroller to do the job. However,
this has the disadvantage that builders need to have a programmer for the microcontroller. The big
advantage is that one small low power chip is all you need. An alternative is to use standard logic
gates since the logic needed is rather simple. I was able to come up with a circuit that uses 6 NOR
gates and an inverter, so two quad NOR gate chips will also work. In this article I will describe both
routes.

A pair of quad NOR gates costs less than a dollar, so the adapter is inexpensive to build. Any
microcontroller has more than enough power for this job, and the simplest ones also cost a dollar or
less while the one I used in the end is around two dollars. Unless the adapter is built into the rig,
connectors and the enclosure will cost more than the electronic parts.

Part of the fun of the design is working out the necessary logic. Here the design is practically a
text-book example. If you just want to try out the circuit, then you can skip the logic design and
just look at section 5 or section 6 for the prototype circuits. Just remember that you must have a
PIC programmer to use the PIC microprocessor circuit.

3 Logic Design

Since closing the paddle grounds the input, I represent an open paddle as a 1 and a closed paddle as
a 0 so that ground potential is a 0. I want to drive the keyer through isolating transistors which will
invert the outputs. It makes sense to take the case where the output is on (i.e. the key line closed)
as a 1 and the output off as a 0.

Since I use my left hand to operate paddles (I operate a bug right handed) but I have the paddles
wired for right-handed use, it gets too confusing to talk about dot and dash inputs and outputs.
Instead I will simply call them left and right inputs and outputs.

I write the left and right paddle inputs as Lin and Rin, and the corresponding adapter outputs as
Lout and Rout. There are five possible states of the ultimatic:

1. Lin = 1, Rin = 1 gives output Lout = 0, Rout = 0.

2. Lin = 1, Rin = 0 gives output Lout = 0, Rout = 1.

3. Lin = 0, Rin = 1 gives output Lout = 1, Rout = 0.

2

4. Lin = 0, Rin = 0 after Lin = 1, Rin = 0 gives output Lout = 1, Rout = 0.

5. Lin = 0, Rin = 0 after Lin = 0, Rin = 1 gives output Lout = 0, Rout = 1.

State 1 has both paddles open and neither key line keyed. States 2 and 3 have either just the left
or just the right paddle closed and the corresponding key line is keyed. Finally States 4 and 5 have
both paddles closed. They key the line corresponding to the last paddle closed.

The next step is to write what is called the transition state table. This is just a fancy name for
writing the logic above in a tabular form for easier analysis. The adapter is in one of its 5 states
when the input changes. The transition state table then gives the new state and outputs as shown
in table 1. Each row corresponds to a current state given by the first entry. The other entries in the
row correspond to the 4 possible inputs, and give the resulting state and the outputs. For example
if we are in state 3, that is, the left paddle is closed and the right is open, and we close the right
paddle. The input is now 0,0, and we will change to state 5 and the outputs are (Lout = 0, Rout=1),
so the entry corresponding to state 3 and inputs 0,0 is 5 (0,1). Notice that there is a “−” for state
1 with the input 1,1. That is because this corresponds to both paddles closing simultaneously and
should never occur, so we don’t care what the adapter does.

We could produce a circuit to make our transition state table, but it would be more complicated
than necessary. In fact, one reason to write the transition state table is to be able to see unnecessary
redundancies. In table 1 rows 2 and 4 are identical and rows 3 and 5 are identical. Because the
transitions from states 2 and 4 are identical, we don’t need to consider these as different states and
can combine them into a single state. Similarly we can combine states 3 and 5 to make a single
state. Row 1 has a dash in the last column and is identical to the other states everywhere else. It
can be combined with either of the other two. (This in fact says that if we did somehow manage to
close the paddles simultaneously, our choice here says it is like closing one before the other and our
choice specifies which one we take to have closed first.) I choose to combine it with 2 and 4, the old
states 1,2, and 4 then become new state 0, and the old states 3 and 5 become new state 1. Rewriting
the transition state table using these new states gives table 2. This table is simpler and will give a
simpler circuit.

Calling the state S, the truth table for the transition state table is shown in table 3. The truth
table is constructed by writing for each current state value Snow, and input values Lin, Rin, the
corresponding new state Snext and the output values Lout, Rout. For example from our reduced
transition state table we see that if both paddles are closed Lin = Rin = 0, and the state S = 0, we
keep S = 0 and and the outputs are Lout = 1, Rout = 0.

We now want to describe the truth table by a set of logic equations. Let’s try to figure out a logic
equation for S. If we look at the rows where the Snext values are 1 (i.e. true), they all have Lin = 0.
In addition, they have either Rin = 1 or S = 1 or both. The logic is Snext is (NOT Lin) AND either
Rin OR Snow. Standard notation uses a bar over Lin to indicate the NOT, AND is represented by
the dot ·, and OR by the plus sign +. The logic equation becomes S = L̄in · [Rin + S]. Repeating
the analysis for Lout and Rout the logic equations representing the truth table can be written

S = L̄in · [Rin + S]

Lout = L̄in ·
[
S̄ + Rin

]
Rout = R̄in · [S + Lin] . (1)

3

4 Hardware design

Figures 1 and 2 show hardware implementations and some transforms using De Morgan’s rules for
the first two equations.6 Using these transforms, the equations can be implemented using two NOR
gates each. The third equation uses the same hardware as the second equation with the labels R and
L interchanged and S̄ changed to S. The final simplified circuits using just NOR gates are given in
Figures 1c, and 2c. An additional inverter is needed to get the inverted S input.

5 NOR gate circuit

Combining the logic gates for the three equations together gives the complete hardware implemen-
tation shown in figure 3.

Since I was just seeing if this would work and not trying to build a permanent adapter, I put the
circuit together on a prototyping board. I had some CD4001 integrated circuits in my junk box, so
I used those. My rather messy result is shown in figures 4 and 5. Ugly style construction could be
used for something more permanent, or a circuit board laid out, but I have not done that.

6 Microcontroller implementation

I have a Microchip PICkit 2 programmer.7 Since my shack computer runs linux, instead of Mi-
crochip’s software I use the open source gputils8 for an assembler and linker. Microchip provides
compilable source code that will operate the PICkit 2 on Linux and Macintosh, and fully supported
software for Windows. If you use Windows, you can simply use Microchip’s software. Both Mi-
crochip’s tools and the open source tools use compatible source code and produce the same hex
output files used to program the microprocessors.

Just about any of the PIC microprocessors can be used. I initially tried a PIC10F200, one of
the most basic PICs available. While it worked, I wanted the processor to sleep when it wasn’t
busy. According to its data sheet the PIC10F200 can take many milliseconds to wake up from sleep,
and a wake up from sleep is like a reset and starts the program at its beginning with the processor
reset to its default configuration. More powerful PICS can be programmed to wake up and continue
processing the instructions after the sleep instruction. To simplify the programming and make the
adapter more robust, I switched to one of these more powerful PIC microprocessors. The one I had
in my junk box was a PIC16F690. It has much more power, more peripherals and more memory.

6You can easily verify De Morgan’s rule that inverting the inputs to an AND gate gives the same truth table as a
NOR gate. More information on digital basics and De Morgan’s rules is given in the ARRL Handbook.

7Available from Microchip http://www.microchip.com. The PICkit 2 programmer costs about $35. The PICkit
2 starter kit includes the programmer, software, demo board, and a tutorial. Current price is about $50. If you have
not programmed a PIC before, you should consider getting the starter kit. You can then test out the programming
software with known good hardware on the demo board provided using the lessons that Microchip provides before
building the ultimatic adapter.

8Available from http://sourceforge.net/projects/gputils/

4

These are all unused and wasted for this simple application; many pins of the PIC16F690 are unused.
The circuit diagram is shown in figure 6, and the source code files are given in the appendix.

The PIC16F690-I/P costs a couple of dollars directly from Microchip, with similar prices from
Mouser, Digikey and other vendors. For this application you could use one of the 12F series 8-pin
chips which would be a little cheaper and significantly smaller. You would need to modify the source
code for the different chip or write your own from scratch – the program is very short and simple.

The main advantages of the PIC solution is having only one integrated circuit and on chip pull up
resistors for the paddle inputs. This can help if space at a premium, for example when building the
adapter inside a rig. A disadvantage is that the PIC has a clock oscillator, and this could produce
rf interference, especially if mounted inside the rig near the receiving circuitry. I built my circuits
so that they would drive transistors that would interface to the keyer input. My prototypes did not
include rf bypass capacitors on the input and output lines. Adding these would be a good idea. I
would try bypassing with 0.001 µF monolithic capacitors, and of course the power supply line should
be bypassed to keep from adding noise.

Since I had already done the logic design, I programmed the PICs to implement the truth table,
table 3. The program has a variable for the state S which is initially set to zero and stored. The
microprocessor then loops continuously reading its inputs and forming an index running from 0
to 7 corresponding to the binary number of the first three columns of table 3. The table entry
corresponding to the binary number from the last three columns of table 3 is returned and used to
set the outputs and the new state. The process repeats.

The PIC16F690 internal oscillator starts rapidly, so when the paddles inputs have not changed,
the microprocessor can be put to sleep, and set to awaken when the paddle inputs change. Since the
microprocessor clock does not run when it is sleeping, power consumption and rf interference should
not be a major problem.

The PIC only needs to have isolating transistors on its output lines. The input lines are pro-
grammed to have internal pull-up resistors. Again, I used a couple of 2N3904 transistors with base
current limiting resistors that I had on hand. The resistors could be eliminated and current con-
sumption reduced by changing these to 2N7000 FETs. If you know that the keyer input voltages
and currents are within specifications, it would be easy to modify the source code to use the PIC’s
tri-state I/O pins to change so a high impedance gives the keyer input line open case, and then pull
the keyer input lines low for the closed case. This would eliminate the interface transistors.

Two photos of the prototyped circuit are shown in figures 7 and 8. The microprocessor is being
powered by the PICkit 2 programmer through the computers USB port. Either a 3 to 5.5 Volt source
could be used or 5 Volts obtained from a 12 Volt supply using a 78L05 three-terminal regulator.

7 Tests and conclusion

I have three iambic keyers available. An Accukeyer,9 a CMOS super keyer III,10 and the internal
Keyer in the Elecraft K2. Both breadboarded circuits worked as expected on all three keyers –

9James Garrett, WB4VVF, The WB4VVF accu-keyer, August QST, p. 19 (1973).
10Jeff Russell, KC0Q and Bud Southard, N0II, The CMOS super keyer 3, August QST, p. 26 (1995).

5

turning them into ultimatic mode keyers.

Both the NOR gate and PIC microprocessor solutions work well. If your present keyer only does
iambic modes, you want to try the ultimatic mode with your dual paddle, and don’t want to buy
a new keyer, you can breadboard either of these circuits in less than an hour. If you want to get
started with microprocessor programming, putting together and programming the PIC16F690 is an
easy first project.

8 Addendum

Shortly after I posted this article, John Crabtree, KC0G, sent me an email with several very useful
comments. He pointed out that the discrete ultimatic adapter can be realized with 6 nor gates rather
than 7 by including an additional state in the analysis.

His analysis exploits the left-right symmetry of the adapter. He keeps two of the equations I
derived in Eq. 1

S = L̄in · [Rin + S]

Rout = R̄in · [S + Lin] (2)

and realizing the left-right symmetry, adds a state T to give

T = R̄in · [Lin + T]

Lout = L̄in · [T + Rin] (3)

The neat thing here is that the hardware implementation of S also gives T ; it is the output of U1b in
figure 3. His simplified circuit is shown in figure 9. As John said,

It is ironic that the introduction of an extra state leads to a simpler hardware design.

While John’s improved circuit still requires two CD4001 or equivalent, it is esthetically much more
pleasing since the circuit is now completely symmetric between the left and right paddle inputs and
outputs.

John also points out that the unused inputs on the CD4001 chips should be grounded, and I have
added this statement to the caption of figure 3.

6

Tables

Table 1: The transition state table. In the entries, the first number is the new state, and the numbers
in parentheses are outputs, (Lout, Rout). The dash indicates a state that should not occur so we do
not care what the result is. The inputs are the values of Lin, Rin

Current State \ inputs 1,1 1,0 0,1 0,0

1 1 (0,0) 2 (0,1) 3 (1,0) -
2 1 (0,0) 2 (0,1) 3 (1,0) 4 (1,0)
3 1 (0,0) 2 (0,1) 3 (1,0) 5 (0,1)
4 1 (0,0) 2 (0,1) 3 (1,0) 4 (1,0)
5 1 (0,0) 2 (0,1) 3 (1,0) 5 (0,1)

Table 2: The reduced transition state table after combining equivalent states in table 1.

Current State \ inputs 1,1 1,0 0,1 0,0

0 0 (0,0) 0 (0,1) 1 (1,0) 0 (1,0)
1 0 (0,0) 0 (0,1) 1 (1,0) 1 (0,1)

Table 3: The truth table for the reduced transition state table.

Snow Lin Rin Snext Lout Rout

0 0 0 0 1 0
0 0 1 1 1 0
0 1 0 0 0 1
0 1 1 0 0 0
1 0 0 1 0 1
1 0 1 1 1 0
1 1 0 0 0 1
1 1 1 0 0 0

7

a.

L̄in

Rin

S

.

b.

Lin

Rin

S

.

c.

Lin

Rin

S

.

Figure 1: S equation realization. At a. the expression for S in Eq. 1 is used directly. At b. a
negation at the input of the AND gate allows us to use Lin, while negating the output of the OR
gate and the other input of the AND gate does not change the logic. At c. the negated input AND
gate is changed to the equivalent NOR gate.

8

a.

L̄in

S̄
Rin

Lout

.

b.

Lin

S̄
Rin

Lout

.

c.

Lin

S̄
Rin

Lout

.

Figure 2: The Lout equation realization. At a. the expression for Lout in Eq. 1 is used directly. At
b. and c. the same manipulations are used as in figure 1.

9

U1a

1

2

3

U1b

5

6

4

U1c

8

9

10
14

Vdd

7

U2d

12

13

11

U2c

8

9

10

U2b

5

6

4

U2a

1

2

3
14

Vdd

7

Lin

Vdd

R1

Rin

Vdd

R2

Q1

Lout

R3

Q2

Rout

R4

.

Figure 3: The complete NOR gate circuit. Values are what I had available.
Q1, Q2 2N3904 general purpose NPN transistors
R1, R2 2.2K Ohm 1/4 watt
R3, R4 2.0K Ohm 1/4 watt
U1, U2 CD4001, quad NOR gates. (Mouser 595-CD4001BE)

I used 2N3904 transistors with base current limiting resistors. The base resistors can be any value
that sufficiently limits the current and saturates the transistors; use larger values than I did if you
have them available. As mentioned in the text, the resistors could be eliminated if 2N7000 field
effect transistors were used. I used a pair of CD4001 integrated circuits, but 74LS02 quad two-input
NOR gates (or any other integrated circuit family) could also be used. The CD4001 can use a
wide range of supply voltage; I powered this circuit from an adjustable power supply usually set at
Vdd = 9 Volts. The input pull-up resistors can be any reasonably convenient value that holds the
input gates high. Using FET output transistors and larger valued pull-up resistors would reduce the
current consumption. Rf bypass capacitors should be included on all the external connections in a
permanent installation. The unused inputs on the CD4001 should be grounded.

10

Figure 4: A quick prototype of the NOR gate circuit using parts on hand. The prototype board is
sitting on a homebrew adjustable power supply. The circuit is connected between the Bencher BY-1
paddle and the Elecraft K2’s keyer input.

11

Figure 5: A close up photograph of the NOR gate prototype.

12

U1

Vdd

Vpp

RC1

RC0

RA1

RA0

Vss

Vdd

1

4

20

19

18

16

15

Vss

Rin

Lin

Q1

Rout

R1

Q2

Lout

R2

Vpp

ICSPDAT ICSPCLK

.

Figure 6: The PIC16F690-I/P circuit. Most of the pins are not connected.
Q1, Q2 2N3904 general purpose NPN transistors
R1,R2 2.0K Ohm
U1 Microchip PIC16F690-I/P (Mouser 579-PIC16F690-I/P)

The same discussion as in figure 3 about changing the output transistors and the pull-up resistors
applies here. The five labeled lines Vpp, Vdd, Vss ICSPDAT and ICSPCLK going to the microprocessor
pins can be connected to a standard header connector for use with the PICkit 2 for in circuit serial
programming (ICSP). Vdd should be connected to a supply voltage of 3.0 to 5.5 volts for operation.

13

Figure 7: The prototyped PIC16F690-I/P circuit connected between the paddles and the K2. The
CMOS Superkeyer III is the aluminum box with 6 pushbuttons to the right. The microprocessor is
being powered by the PICkit 2 programmer shown connected to the in-circuit serial programming
header.

14

Figure 8: A close-up photograph of the PIC16F690-I/P circuit. The 16F690 is the larger chip on the
bottom half of the prototype board. The parts on the upper half are for the prototyped PIC10F200-
I/P circuit that was abandoned.

15

U1a

1

2

3

U1b

5

6

4

14

Vdd

7

U2d

12

13

11

U2c

8

9

10

U2b

5

6

4

U2a

1

2

3
14

Vdd

7

Lin

Vdd

R1

Rin

Vdd

R2

Q1

Lout

R3

Q2

Rout

R4

.

Figure 9: The improved nor gate circuit suggested by John Crabtree, KC0G. See caption to figure 3
for component details.

16

Appendix

The assembler code and linker script for the 16F690 are given here.

Main code listing is:

; $Id: ultimatic.asm,v 1.4 2008/10/05 18:57:44 schmidt Exp $

#include "processor.h"

#define CF1 _FCMEN_OFF & _IESO_OFF & _BOR_OFF & _CPD_OFF & _CP_OFF

#define CF2 _MCLRE_OFF & _PWRTE_OFF & _WDT_OFF & _INTRC_OSC_NOCLKOUT

__config (CF1 & CF2)

;turn off crossing page boundary message

ERRORLEVEL -306,-302

udata

state res 1 ;state

index res 1 ;index into table

TABLES code ;truthtable

newstate:

data 0x02,0x06,0x01,0x00,0x05,0x06,0x01,0x00

STARTUP code

goto main

PROG0 code

main:

call setup ;set up ports etc.

loop:

movf PORTA,w ;read paddles

bcf INTCON,RABIF ;clear change interrupt

movf PORTA,w ;and read again to be current

andlw 0x03 ;mask off inputs

iorwf state,w ;or in state

movwf index ;index into truthtable

banksel EEADRH ;begin standard code to read program memory

movlw low(newstate) ;get low byte of address

banksel index ;add in index

addwf index,w ;

banksel EEADR ;move to EEADR

movwf EEADR

movlw high(newstate);get high byte

movwf EEADRH ;

17

btfsc STATUS,C ;increment if there was a carry

incf EEADRH,f ;should not happen here since table is small

banksel EECON1 ;do read reads

bsf EECON1,EEPGD

bsf EECON1,RD

nop ;and wait for result

nop

banksel EEDATA

movf EEDATA,w ;move result to w

banksel state

movwf state ;result stored in state and w

andlw 0x03 ;mask off output port

movwf PORTC ;set output

movlw 0x04 ;form mask

andwf state,f ;mask state bit

sleep ;sleep until next state change

nop

goto loop

setup:

banksel state ;bank 0

clrf state ;initialize state to 0

banksel PORTA ;bank 0

clrf PORTA ;clear ports

clrf PORTB

clrf PORTC

banksel OSCCON ;bank 1

bsf OSCCON,IRCF2 ;8MHz internal oscillator

bsf OSCCON,IRCF1

bsf OSCCON,IRCF0

bsf OSCCON,SCS

clrf TRISB ;set PORTB to outputs

clrf TRISC ;set PORTC to outputs

movlw 0x03

movwf TRISA ;set PORTA ra0 and ra1 to inputs

bcf OPTION_REG,NOT_RABPU ;allow weak pull-ups

movlw 0x03

movwf WPUA ;set weak pull-ups on ra0 and ra1

banksel ANSEL ;bank 2

clrf ANSEL ;make PORTS digital

clrf ANSELH ;make PORTS digital

banksel IOCA

clrf IOCA ;clear interrupt on change for porta

;this should cause a wake up from sleep,

;but not call the interrupt routine

18

bsf IOCA,IOCA0 ;set interrupt on change for ra0

bsf IOCA,IOCA1 ;set interrupt on change for ra1

banksel PORTA ;bank 1

clrf INTCON ;disable all interrupts

bsf INTCON,RABIE ;enable PORTA/B change interrupt

movf PORTA,w

bcf INTCON,RABIF ;clear PORT change interrupt flag

return

end

The include file processor.h is:

;$Id: processor.h,v 1.1 2008/10/03 03:20:45 schmidt Exp $

list p=16f690

#include <p16f690.inc>

The linker script is:

//Linker file for 16f690

LIBPATH .

CODEPAGE NAME=vectors START=0x0 END=0x4 PROTECTED

CODEPAGE NAME=page0 START=0x5 END=0x6FF

CODEPAGE NAME=tablecode START=0x700 END=0x7FF

CODEPAGE NAME=page1 START=0x800 END=0xFFF

CODEPAGE NAME=.idlocs START=0x2000 END=0x2003 PROTECTED

CODEPAGE NAME=icd_inst START=0x2004 END=0x2004 PROTECTED

CODEPAGE NAME=mfg_code START=0x2005 END=0x2005 PROTECTED

CODEPAGE NAME=.device_id START=0x2006 END=0x2006 PROTECTED

CODEPAGE NAME=.config START=0x2007 END=0x2007 PROTECTED

CODEPAGE NAME=.calib START=0x2008 END=0x2008 PROTECTED

CODEPAGE NAME=eedata START=0x2100 END=0x21FF PROTECTED

DATABANK NAME=sfr0 START=0x0 END=0x1F PROTECTED

DATABANK NAME=sfr1 START=0x80 END=0x9F PROTECTED

DATABANK NAME=sfr2 START=0x100 END=0x11F PROTECTED

DATABANK NAME=sfr3 START=0x180 END=0x19F PROTECTED

DATABANK NAME=gpr0 START=0x20 END=0x6F

DATABANK NAME=gpr1 START=0xA0 END=0xEF

DATABANK NAME=gpr2 START=0x120 END=0x16F

SHAREBANK NAME=gprnobnk START=0x70 END=0x7F

19

SHAREBANK NAME=gprnobnk START=0xF0 END=0xFF

SHAREBANK NAME=gprnobnk START=0x170 END=0x17F

SHAREBANK NAME=gprnobnk START=0x1F0 END=0x1FF

SECTION NAME=TABLES ROM=tablecode // tables

SECTION NAME=STARTUP ROM=vectors // Reset and interrupt vectors

SECTION NAME=PROG0 ROM=page0 // ROM code space

SECTION NAME=PROG1 ROM=page1 // ROM code space

SECTION NAME=IDLOCS ROM=.idlocs // ID locations

SECTION NAME=ICD_INST ROM=icd_inst // ICD instruction

SECTION NAME=MFG_CODE ROM=mfg_code // Manufacturing code

SECTION NAME=DEVICEID ROM=.device_id // Device ID

SECTION NAME=CONFIG ROM=.config // Configuration bits location

SECTION NAME=CALIBR ROM=.calib // Calibration bits location

SECTION NAME=DEEPROM ROM=eedata // Data EEPROM

20

