
Setting up udev rules to identify USB devices on two
TS-590SG transceivers

Kevin Schmidt, W9CF
6510 South Roosevelt Street
Tempe, Arizona 85283 USA

1 Introduction

I began using SO2R with a Elecraft K2 and a Ten-Tec Corsair. Since then I have upgraded
each by buying used Kenwood TS-590SG rigs. Both of these came with the SO-3 temperature
compensated crystal oscillator and the VGS-1 voice guide recorder/player/annunciator. The
only difference is cosmetic, one of the rigs is an anniversary edition. They are otherwise
identical.

Fortunately, the internal Silicon Labs CP210x USB serial adapters have unique serial
numbers. Unfortunately, the internal PCM2903B Audio codecs do not. My shack computer
dual boots linux and Windows 10, but I nearly always use linux. These notes are how I set
up udev to identify which rig is which and give the serial and sound-card devices unique
names.

2 Internal serial Ports

The serial ports have unique serial numbers. I added the udev rules

SUBSYSTEM=="tty", ATTRS{idVendor}=="10c4", ATTRS{idProduct}=="ea60",

ATTRS{serial}=="0567003D1908", SYMLINK+="ttyTS590sg_a", GROUP="dialout",

MODE="0660"

SUBSYSTEM=="tty", ATTRS{idVendor}=="10c4", ATTRS{idProduct}=="ea60",

ATTRS{serial}=="05670043DF58", SYMLINK+="ttyTS590sg_b", GROUP="dialout",

MODE="0660"

to the file

/etc/udev/rules.d/90-serial-ports.rules

These udev rules each need to be on a single line with no line breaks!
In addition to the USB Vendor and Product, I have included the serial number. This

is reported by turning on the power to the TS-590SG and noting that the USB serial port
device /dev/ttyUSB0 or /dev/ttyUSB1 etc. appears, and then doing an udevadm attribute
walk to discover the serial number

1

udevadm info -a -n /dev/ttyUSB0

With these rules, the serial devices /dev/ttyTS590sg a and /dev/ttyTS590sg b are uniquely
associated with the correct rig.

3 Internal USB sound Cards

Unfortunately, there are no serial numbers associated with the TS590SG internal sound
devices. The most straightforward method to associate stable unique names with each
soundcard would be to always plug them into the same USB ports, and this was my initial
method.

After including the serial rules above, I found the KERNEL value to use in the KERNELS
to match the internal hub in the radio. I wrote the details as comments in the rules file.
Plugging into a different USB port on the computer would require redoing this. To use this
method, add the file

/etc/udev/rules.d/99-usb-audio.rules

with contents:

#KERNELS is set to the KERNELS value for the internal TS590SG hub

#which corresponds to the physical USB port. The serial port serial

#number is used in 90-serial-ports.rules to alias the TS590SG serial

#ports to /dev/ttyTS590sg_a and /dev/ttyTS590sg_b. Therefore plugging

#in the TS590SG USB cable, powering it on, and using

#udevadm info -n /dev/ttyTS590sg_a -a

#or

#udevadm info -n /dev/ttyTS590sg_b -a

#will show the correct KERNELS value to use to get the corresponding

#audio device.

#Look for the parent device with idProduct 2512 and idVendor 0424.

#

ACTION=="change", SUBSYSTEM=="sound", KERNELS=="3-1.6.1", ATTR{id}="TS590SG_A",

ENV{PULSE_NAME}="TS590SG_A",ENV{ID_MODEL_FROM_DATABASE}="TS590SG_A"

ACTION=="change", SUBSYSTEM=="sound", KERNELS=="3-1.6.6", ATTR{id}="TS590SG_B",

ENV{PULSE_NAME}="TS590SG_B",ENV{ID_MODEL_FROM_DATABASE}="TS590SG_B"

Looking at the udev rules for the sound cards, the default linux sound card rules need
to wait until all the sound card devices are detected before completing. I therefore assumed
that by the time that the sound card change event occured, the serial port would be set
up, but see below for caveats. I wrote a python script which given a TS-590SG sound card,
walks up the usb device path until it finds the TS-590SG internal hub. It then looks for a
connected CP210x and uses its serial number to identify the correct radio.

The following is my current configuration in 99-usb-audio.rules

2

#

Here ts590sg.py walks walks up the DEVPATH environment variable until it

finds the idProduct and idVendor of the internal hub of the TS590SG, it

then walks down the subdirectories until it finds the idProduct and idVendor

of the UART. It checks that serial number to tell which rig is which

#

ACTION=="change", SUBSYSTEM=="sound", ATTRS{idVendor}=="08bb",

ATTRS{idProduct}=="29b3", PROGRAM="/usr/local/udevprograms/ts590sg.py",

ATTR{id}="%c",ENV{PULSE_NAME}="%c",ENV{ID_MODEL_FROM_DATABASE}="%c"

The python code returns either TS590SG A or TS590SG B which is substituted for the
pulse audio names and IDs. It is:

#!/usr/bin/env python3

#TS590SG internal hub ids

hubIdVendor = "0424"

hubIdProduct = "2512"

#TS590SG UARTs

UartIdVendor = "10c4"

UartIdProduct = "ea60"

UartSerialA = "0567003D1908"

UartSerialB = "05670043DF58"

import os

import sys

path = ’/sys’ + os.environ["DEVPATH"]

count = 0

vendor = ""

product = ""

#Walk up the devpath to find the TS590SG internal usb hub

while path != ’/’:

if ’devpath’ in os.listdir(path):

count += 1

if count == 2:

with open(path + ’/idVendor’) as f:

vendor = f.readline().rstrip()

with open(path + ’/idProduct’) as f:

product = f.readline().rstrip()

break

path = os.path.dirname(path)

#Do a sanity check that the ids are correct, then find the subdirectory

#for the UART. Read the Serial number to identify the rig.

if (vendor == hubIdVendor) and (product == hubIdProduct):

3

subdirs = [f.path for f in os.scandir(path) if f.is_dir() and not f.is_symlink()]

for d in subdirs:

if ’devpath’ in os.listdir(d):

with open(d + ’/idVendor’) as f:

vendor = f.readline().rstrip()

with open(d + ’/idProduct’) as f:

product = f.readline().rstrip()

if (vendor == UartIdVendor) and (product == UartIdProduct):

with open(d + ’/serial’) as f:

serial = f.readline().rstrip()

if serial == UartSerialA:

print("TS590SG_A")

sys.exit(0)

elif serial == UartSerialB:

print("TS590SG_B")

sys.exit(0)

sys.exit(1)

With this change, the pulse audio volume control shows the rig audio devices with easy
to identify names as shown in fig. 1.

Note! Looking at lsusb and the device number, the serial port has a higher device number
than the sound card device when DC is applied to the TS590SG. This suggests that there
could be a race condition between the sound card udev rule getting triggered and the USB
serial port getting set up. I have not seen this problem. From the output of udevadm monitor,
it looks like the udev sound card processing in /lib/udev/rules.d/78-sound-card.rules which
waits for the card* device to be setup takes enough time that the serial port is connected
before the change event occurs, which seems to be the last thing that happens from the
monitor output. A failure to find the serial port should simply cause the python code to exit
with status 1, which will make the rule not match, and the default names would be used for
the sound card.

If there ever is a problem, I can revert to the previous method that identifies the KER-
NELS value to use.

4

Figure 1: A screenshot of the pulse audio volume control showing the sound card configu-
ration with the easily identified names TS590SG A and TS590SG B for the internal sound
cards.

5

	Introduction
	Internal serial Ports
	Internal USB sound Cards

